

Emerging Trends in Nutrition for Health and Scope for Innovations-Way Forward" (EMTREND)

2. ILSI INDIA YOUNG SCIENTIST AWARD

IMPROVING PUBLIC HEALTH – FOOD SAFETY, NUTRITION & WELLBEING

Dr. Pradip Behare, Senior Scientist

Dairy Microbiology Division, ICAR-National Dairy Research Institute (NDRI), Karnal, Haryana

ORCID ID: https://orcid.org/0000-0002-0403-2398

RESEARCHGATE:

https://www.researchgate.net/profile/Pradip_Behare

October 12, 2022

RESEARCH FOCUS

Key Genera

- Lactococcus
- Lactobacillus
- Streptococcus

Lactic Acid Bacteria (LAB) and Functional Food

Key Genera

- Pediococcus
- Leuconostocs
- Propionibacterium

Bio-prospecting Native Strains

- Isolation & genomic characterization
 - ✓ Technological attributes
 - ✓ Functional attributes
- Proteomics of LAB
- ✓ Gut adaptability/stress tolerance mechanism

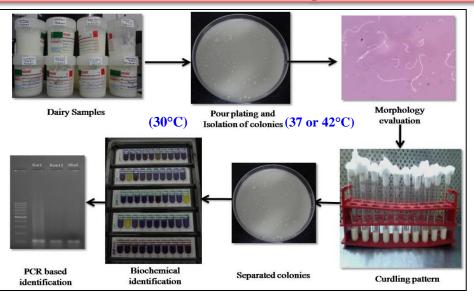
Exploring Biomolecules Production

- Exopolysaccharides
- ✓ Textural & Health properties
- ✓ Micronutrient bioavailability
- Vitamins (B₁₂)
- Bioactive peptides
 - ✓ Immunomodulation
- Low-calorie sugar (Mannitol)
- Phenyllactic acid
 - ✓ Bio-preservative

Developing Functional Milk Products

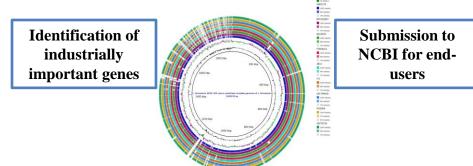
- Low-fat Dahi, Lassi, Shrikhand
- Sour Dahi
- Misti Dahi
- Greek-Style Yoghurt
- Vitamin B₁₂ bio-enriched Soy curd
- Extended shelf-life Paneer

Strategic research


Technology development

Commercialization

Improving Human Health


Basic research

Bio-prospecting Native LAB Strains from Dairy and Non-Dairy Sources-Technological to Functional Characterization

Whole Genome Sequencing: 06

16S ribosomal RNA gene, partial sequence:15

- LAB species (*Lactococcus*, *Lactobacillus*, *Streptococcus*, *and Leuconostocs* genus) have been well characterized.
 - ✓ Acidification, flavour & textural Profile (Firm & Soft)
 - ✓ Other specific attributes (Sugar Tolerance, Bacteriocin, GABA, Trehalose etc)
- Deposition of potential strains to National Repository "National Collection of Dairy Cultures" (NCDC).

Significance of Research Work

- Over 150 LAB strains are made available for end users through National Collection of Dairy Cultures (NCDC), NDRI, Karnal, Haryana.
- In-depth genomic information on technological and functional features of the strains

Probiotic Potential of Indigenous LAB Strains- In vitro and in vivo

Cont...

Dairy and non-dairy origin strains

L. rhamnosus NCDC 610

L. rhamnosus NCDC 610

32 Rats

- L. fermentum NCDC400
- L. fermentum NCDC605

In vitro properties

- Bile tolerance: 1.5% for 6 h
- Acid tolerance: pH 2.5 for 3 h • Cell surface hydrophobicity: 11.3%
- L. fermentum NCDC 400 (85.81±0.50%) Cholesterol Binding % 60 In vivo properties

8 Rats 8 Rats 8 Rats Rats were Sacrificed

Feed with High Fructose

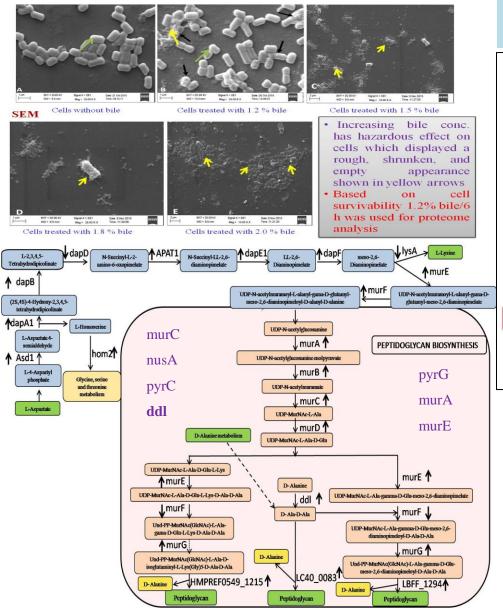
Biochemical measures in rats fed with different experimental diets along with control normal diet for 4 weeks and 10 weeks

Week	Variables	Group - 1	Group - 2	Group - 3	Group -4
4	FBG (mg/dL)	87.48±1.85aA	331.60±30.60aB	299.18±44.75aB	333.75±27.26a
10	FBG (mg/dL)	88.83±1.00aA	391.00±37.59ЬВ	256.40±38.00ьС	223.08±42.53b
4	Hb (%)	15.01±0.54aA	7.72±0.08aB	8.12±0.16aB	7.17±0.14aB
10	Hb (%)	14.11±0.52aA	5.94±0.25bB	14.53±0.39bA	14.45±0.20b/

Kadam, 2013; Minz, 2011

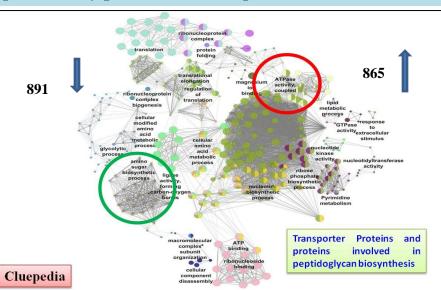
LRNCDC610 has shown anti-diabetic activity

LFNCDC400 shown greater cholesterol lowering properties compared to non-probiotic strain in animal model


Cultures

Gawande, K., Kolhekar, M.....Behare, P. V. 2021, Food Hydrocolloides for Health

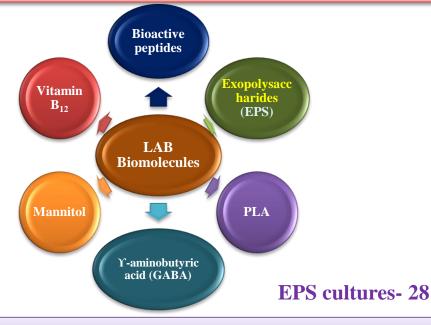
Significance of Probiotic Research


- Two indigenous probiotic strains for human health applications
 - ✓ Indigenous probiotic L. rhamnosus NCDC 610
 - ✓ Indigenous probiotic L. fermentum NCDC 400

Evaluation of Bile Stress Tolerance Process in L. fermentum Strains by Proteome Analysis

Identified peptidoglycan remodeling pathway for bile tolerance

Identified bile responsive key proteins in indigenous probiotic by proteomic techniques


The top enriched functionally grouped network was generated from the list of differentially regulated proteins. GO terms are represented as nodes, and the size of nodes represents the term enrichment significance as a functional cluster (using a kappa score = 0.4). Node colors represent the functional group while mixed coloring nodes belong to multiple groups. Functionally related groups partially overlap. Edges correspond to term-term interaction or term-genes interaction. Only the most significant term in the group was labeled.

Kaur, G, Mohanty, A. K, **Behare P. V. et al.** Journal of Proteomics 2017a; Pragya,**Behare** P. V. **et al.** Journal of Proteomics 2017 b

Significance of Proteomic Research

- First report from India on probiotic proteome and bile stress tolerance process in indigenous probiotic strain.
- Enhanced our understanding of stress responsive changes and gut adaptability by the probiotic strain

Exploring LAB Producing Bio-molecules- Technological to Nutritional Perspective

EPS producing LAB- Texturizing agent

EPSAM1, EPS399, EPSRam12, EPSWhw1, EPSGrv3 (High molecular weight > 10⁴ Da and stiffer chains in the linkages) for set and stirred FMP

- ✓ Greater intrinsic viscosities/WHC
- **✓** Shear thinning behavior
- **✓** Sensory properties

Significance of the Study

- LAB derived EPS as biothickening molecule
- EPS producing strains with technological properties are categorized

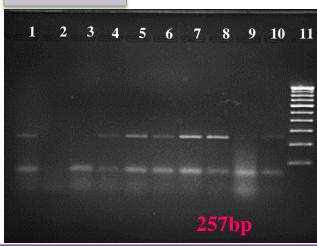
Exopolysaccharides (EPS) producing LAB

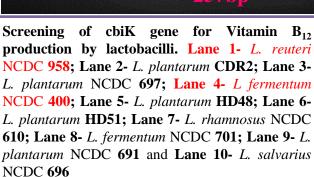
L. rhamnosus Kar1 derived "EPSKar1"

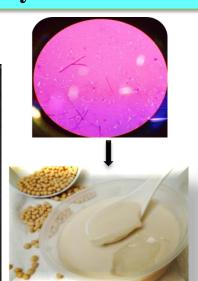
Iron balance studies (Experimental period -20 days)

from Samures (Emperimental portou 25 days)									
Duration	1 st week			2 nd week			3 rd week		
Groups——	Only FeSO ₄	EPS-Fe 25 mg/Kg BW	EPS-Fe 50 mg/Kg BW	Only FeSO ₄	EPS-Fe 25 mg/Kg BW	EPS-Fe 50 mg/Kg BW	Only FeSO ₄	EPS-Fe 25 mg/Kg BW	EPS-Fe 50 mg/Kg BW
Iron intake (mg/day)	11.00	11.00	22.00	11.00	11.00	22.00 11.00		11.00	22.00
Faecal excretion (mg/day)	6.81±0.15	6.14±0.06	11.00±0.52	6.92±0.06	6.16±0.04	10.93±0.21	6.83±0.20	6.19±0.13	10.76±0.11
Urinary excretion (mg/day)	0.05±0.002	0.04±0.002	0.04±0.004	0.05±0.002	0.03±0.006	0.03±0.008	0.06±0.004	0.03±0.01	0.03±0.01
Apparent digestibility coefficient(%)	38.06±1.38ª	44.12±0.59b	50±2.40°	37.03±0.57ª	44±0.37 ⁶	50.30±0.99°	37.87±1.83ª	43.72±1.20b	51.06±0.52°
Iron balance (mg/day)	4.24±0.15 ^a	4.90±0.06 ^a	11.04±0.53b	4.12±0.06a	4.87±0.04 ^b	11.10±0.21°	4.22±0.19a	4.89±0.14 ^b	11.27±0.11°
% Retention/Intake	38.58±1.39ª	44.55±0.56 ^b	50.21±2.41 ^b	37.52±0.60°	44.34±0.43 ^b	50.47±0.99°	38.43±1.81°	44.08±1.29b	51.24±0.53°

The faecal and urinary iron excretion for the anaemic control group was 0.05 ± 0.00 and 0.02 ± 0.00 mg throughout the experimental period.


Significance of the Study


- The EPSKar1-iron complex showed exhibited anti-anaemic effect in anaemia induced rats.
- EPSKar1-iron can be used to develop iron fortified food product.


Vitamin B₁₂ Production by *Lactobacillus reuteri* NCDC 958/F2

Cont...

cbiK gene

• Prevalence of vitamin B_{12} deficiency is 47% in north Indian population.

(Singla et al., 2019)

- RDA of Vitamin B_{12} is 2.4 μ g/day
- Intracellular by NCDC 958 was 1.948 \pm 53 and 2.6334 \pm 40 $\mu g/mL$

Vit. B₁₂ bio-fortified food

• Vitamin B_{12} produced by L. reuteri F2 showed amelioration of the Vitamin B12 deficiency in Wistar rats

respectively.

LAB strain	Intracellular Vitamin B ₁₂ (µg/mL)	Extracellul ar Vitamin B ₁₂ (µg/mL)
L. reuteri NCDC 958	1.948 ± 53	2.6334 ± 40
L. fermentum NCDC 400	1.160 ± 49	2.762 ± 27.5

Significance of the Study

- Native L. reuteri NCDC 958 endowed with greater vitamin B_{12} producing capabilities
- Vitamin B_{12} biofortified Soy food was developed and would be useful to tackle B_{12} deficiency in Indian population

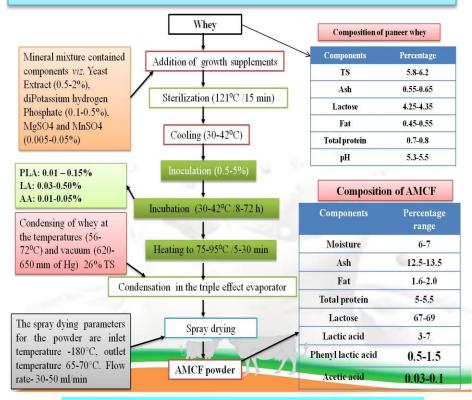
LAB Fermentation Derived Bioactive Peptides

In vitro immunomodulatory activity of custom synthesized peptides derived from L. rhamnosus NCDC24 fermented milk

Based on the structure-activity relationship four peptides from casein were selected and custom synthesized

- * AGWNIPM and YLGYLEQLLR showed the highest antioxidative ability (ABTS scavenging assay)
- These peptides have increased the antiinflammatory cytokine and reduced the proinflammatory cytokine (IL-6, IL-1β, and TNF-α) in LPS-stimulated mouse macrophages.

Srivastava, U., Basavaprabhu, H. N.**Behare, P. V.** 2022 **Peptides** vol. 155, September 2022, 170843

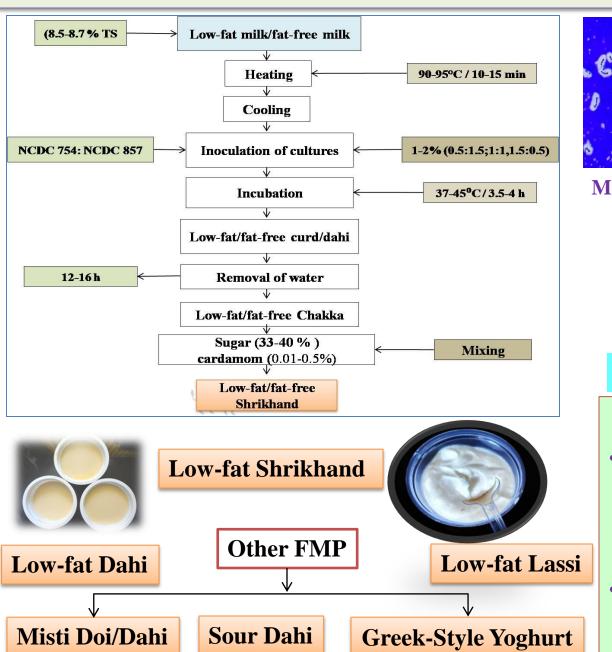

Significance of the Study

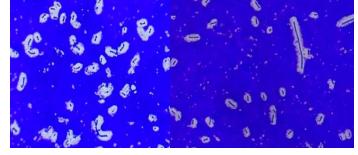
• Antioxidative and immunomodulatory peptides for nutraceutical application

LAB Fermentation Derived Phenyllactic Acid

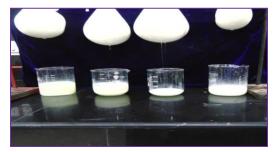
Cont...

L. plantarum NCDC 769- PLA production




Patent Application No: 202111007461

Significance of the Study


• Phenyllactic acid rich AMCF formulation can be used as coagulant and biopreservative agent for Paneer

Development of Functional Fermented Milk Products

MTCC25192 + MTCC25193

Patent Granted- 388158

Significance of the Study

- LAB based technologies have been developed or patented and are available for transfer to stakeholders
- Use of these technologies either improve quality, health or increases 5-7% yield

Impact of Research Contribution and Technologies Commercialization

Company

Name

Firm 1

Firm 2

Brand

Name

X

Production

(Kg/Month)

approx.

60 (DVS

Status

Under trial at

industry

Available in

Sale

(Rs./Month)

approx.

9,00,000

Name of technologies

Technology of Sour Dahi using prolific

Exopolysaccharides producing cultures

acidifying lactic cultures (19.03.2019)

for preparation of low-fat dahi			powder)		the market			
(11.02.2016)								
Bioprocess for direct vat set misti dahi	Firm 2	Y	10 (DVS	1,50,000	Available in			
culture (11.02.2016)			powder)		the market			
Sugar tolerating lactic cultures for	Firm 3	Z	9000	1,269,000	Available in			
preparation of Misti Doi" (01.11.2014)					the market			
(as on 31.12.2020)								
*Note: The information on production and sale of product/DVS cultures is obtained from owner of the plant or Director/managers of the plant, production/sale of Misthi <i>Dahi</i> . Calculation of Sale of products per month: Sale of DVS culture: 40-50 paisa/Lit of milk (15000 Rs/Kg); Sale of Mishti <i>Dahi</i> : 12 Rs./85 gm of Mishti Dahi (i.e. 141 Rs./kg/day)								
Enhanced scientific knowledge, developed and commercialized health promoting dairy								

food technologies, promoted entrepreneurs for manufacture of value added products and

created employment opportunities for the younger population.

ONGOING RESEARCH WORK

FUTURE PLANS

- **❖** The role of phosphorylated proteins in the probiotic features of *L. fermentum* NCDC400
- **❖** Formulation of shelf stable thermophilic liquid starter blends
- **❖** Focus on eliminating micronutrient deficiency
 - ✓ Assessing EPSKar1-iron complex fortification in different food matrices
 - **✓** Characterization of zinc-binding EPS
- **❖** Development of vitamin B12 bioenriched stirred fermented milk

- **❖** Development of Breed-Specific Lactic Dairy Starter Culture Blends (Gir and Sahiwal Breed)
- **❖** Investigating the effect of LAB-derived EPS on the modulation of the gut microbiota
- Exploring LAB strains
 - ✓ Y-aminobutyric acid production (GABA)
 - **✓** Vitamin K production
 - **✓** Mannitol production
- ***** Efficacy of EPSKar1-iron complexfortified food in anaemic subjects

TFSL/NCDC Lab Team

Dr. Pradip V. Behare Senior Scientist & In-charge NCDC

Mr. Saurabh Kadyan Scientist

Mrs. Yogita Sharma Technical Officer

Ms. Harshita Naithani Young Professional-II

Mr. Jasbir Singh Young Professional-I

Mr. Rajbir Lab attendant

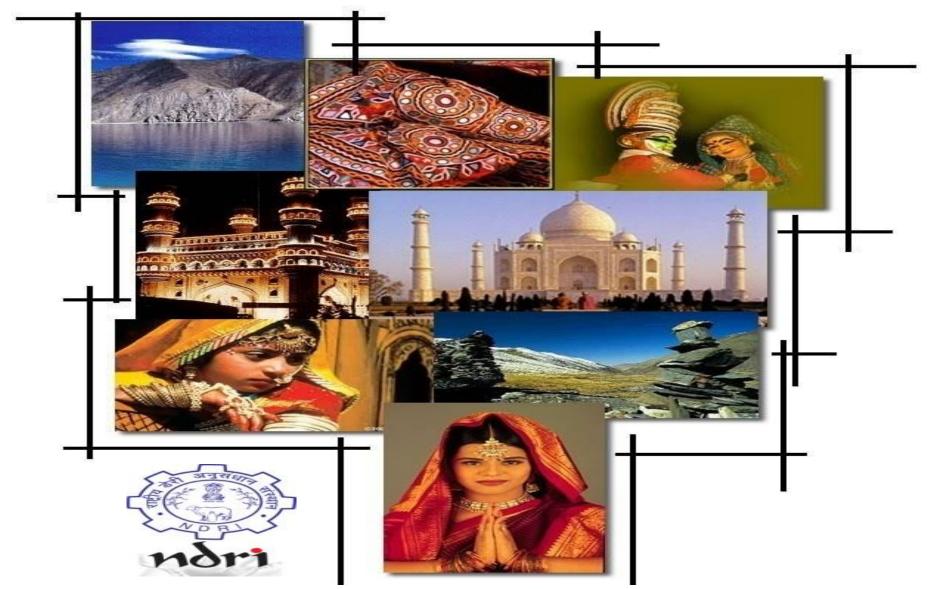
Mr. Satish Kumar Lab attendant

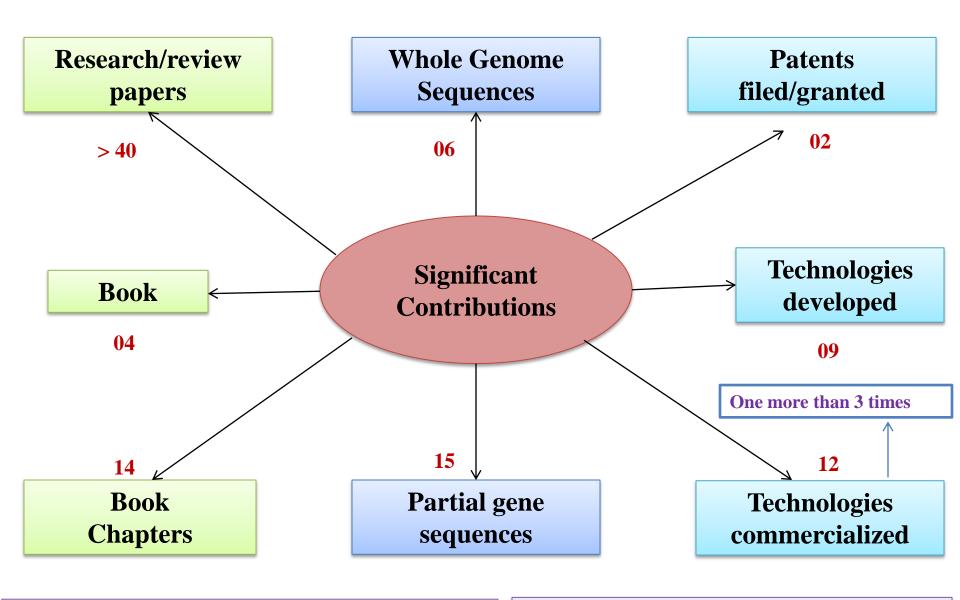
Mrs. Manorama Kumari PhD scholar

Ms. Vaishali Dasriya PhD scholar

Mr. Basavaprabhu H.N. PhD scholar

Ms. Sonia Ranveer PhD scholar




Ms. Nishu Saini PhD scholar

Thank You

Externally Funded Project Completed-06

M. Tech/Ph.D Thesis Completed - 13